taking the pressure out of fluid flow calculations

டiquiஏ

pipe Clənveヒer

Verification of Calculation Results For Non-Compressible Flow

Table of Contents - Results Data: Systems Solved by Liquid Pipe Diameter

Introduction 3
Case 01: Design of a Uniform Pipeline 4
Case 02: Pump - Storage Power Scheme - Pipeline design 5
Case 03: Water - Galvanized Steel Pipe 6
Case 04: Heavy Fuel Oil - Sizing a Horizontal Pipe 7
References 8

Introduction

Pipe Flow Liquid Pipe Diameter is a software application that calculates the minimum pipe diameter that allows a given fluid rate at a specified maximum pressure drop. The calculation uses the Darcy Weisbach equation with ColebrookWhite friction factors to compute friction losses. The software takes account of the internal roughness of the pipe material, the length of the pipe, the flow rate of the liquid, the maximum allowed pressure drop, the fluid density, the fluid viscosity, and the pressure loss through any fittings and bends.

The liquid pipe diameter calculations produced by the Pipe Flow Liquid Pipe Diameter software can be verified by comparison against published results from a number of well-known sources. The information in this document provides a general description of a published problem, the Reference Source, the Published Results Data, the App Results Data and a commentary on the results obtained.

For each of the calculation problems detailed in this document, the results data produced by the Pipe Flow Liquid Pipe Diameter software compares well with the published results data.

Calculations

Friction Factors are calculated using the Colebrook-White equation.
Friction Loss for non-compressible fluids is calculated using the Darcy-Weisbach method, which provides accurate results for Newtonian fluids, including general process fluids.

Software Releases

The Pipe Flow Liquid Pipe Diameter App is currently available only on iOS (Apple Mobile Devices).

Pipe Flow Software produces a range of different software applications for calculating flow rates and pressure losses in pipe systems, including our premier Pipe Flow Expert software for Windows, which is used to design energy efficient piping and pumping systems.

Pipe Flow Software programs are used by engineers in over 100 countries worldwide.

We have clients in a variety of industries including aerospace, chemical processing, education, food and beverage, general engineering, mining, petrochemical, pharmaceutical, power generation, water distribution, and wastewater processing.

Case 01: Design of a Uniform Pipeline

Reference: Nalluri \& Featherstone's Civil Engineering Hydraulics sixth edition, 2016, Martin Marriott, Page 105, Example 4.7

Liquid Pipe Diameter App: Find_Diameter_Case_01_Pipeline_Diameter_Between_Two_Reservoirs.pfwd

Calculation Problem:

A uniform pipeline of length 20 km is to be designed to convey water at a minimum rate of $250 \mathrm{~L} / \mathrm{s}$ from an impounding reservoir to a service reservoir, the minimum difference in water level between which is 160 m . Local losses, including entry loss and velocity head, total $10 \mathrm{~V}^{2} / 2 \mathrm{~g}$.

Determine the diameter of a standard commercially available lined spun iron pipeline which will provide the required flow when in new condition ($\mathrm{k}=0.03 \mathrm{~mm}$).

Fluid Data: Water.

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.
The final row shows the App calculated the diameter at 388.78 mm for the minimum flow rate of $250 \mathrm{~L} / \mathrm{s}$, which would lead to the selection of a pipe with a 400 mm diameter.

(>) Liqெiø pipe ¢ləmeヒer		
Results 『®		\times
Calc. Method	Darcy-Weisbach	
Material	- Steel (ANSI) Sch. 40	
Length	20000	m
Elevation Change	0	m
Fluid ($15^{\circ} \mathrm{C}$)	Water	
Volume Flow	- 250	1/sec
Pressure Loss	160	m fluid
Flow Type	Turbulent	
Reynolds Number	r 718744	
Friction Factor	0.013560	
Fluid Velocity	2.11	m/sec
Friction Loss	157.738723	m fluid
Fittings Loss	$1{ }^{1} 2.261277$	m fluid
Total Entry Loss	2.261277	m fluid
Total Entry K	10.00	
@ $400 \mathrm{~mm} \mathrm{\times 1}$	K 10.00 (10.00 $\times 1)$	Pos
Elevation Loss	0	mfluid
Diameter	388.7756	mm
\times close resulis		

Results Comparison:

Data Item	Published Data	App	With Local Losses	At Flow Rate
Inner Diameter	350 mm	350.05 mm	0	$191.1 \mathrm{~L} / \mathrm{s}$
Inner Diameter	400 mm	400.01 mm	0	$271.5 \mathrm{~L} / \mathrm{s}$
Inner Diameter	400 mm	400.02 mm	$10 \mathrm{~V}^{2} / 2 \mathrm{~g}$	$269.4 \mathrm{~L} / \mathrm{s}$
Inner Diameter	Not Calculated	388.78 mm	$10 \mathrm{~V}^{2} / 2 \mathrm{~g}$	$250 \mathrm{~L} / \mathrm{s}$

Case 02: Pump - Storage Power Scheme - Pipeline design

Reference: Nalluri \& Featherstone's Civil Engineering Hydraulics sixth edition, 2016, Martin Marriott, Page 110, Example 4.10

Liquid Pipe Diameter App: Find_Diameter_Case_02_Pipeline_Diameter_Four_Pump_Turbine.pfwd

Calculation Problem:

The four pump turbine units of a pumped storage hydroelectric scheme are each to be supplied by a high-pressure pipeline of length 2000 m . The minimum gross head (difference in level between upper and lower reservoirs) is 310 m and the maximum head is 340 m .

The upper reservoir has a usable volume of $3.25 \times 10^{6} \mathrm{~m}^{3}$ which could be released to the turbines in a minimum period of 4 hours.

Maximum power output required/turbine $=110 \mathrm{MW}$
Turbogenerator efficiency $=80 \%$
Effective roughness of pipeline $=0.6 \mathrm{~mm}$
Taking minor losses in the pipeline, power station, and draft tube to be 3.0 m , determine the minimum diameter of pipeline to enable the maximum specified power to be developed.

The book calculated a flow rate of $56.42 \mathrm{~m}^{3} / \mathrm{s}$ is required to achieve a maximum power of 110 MW .

Fluid Data: Water.

See the Results Comparison Table below.
The published data and the calculated results compare well.
The book uses a slight variation on the Colebrook white equation, and this likely explains the small difference in calculated diameters.

Results Comparison:

Data Item	Published Data	App
Inner Diameter	2.65 m	2.63 m

Case 03: Water - Galvanized Steel Pipe

Reference: Mechanics of Fluids 9th edition, 2012, Bernard S. Massey, John Ward-Smith Page 256, Example 7.3
Liquid Pipe Diameter App: Find_Diameter_Case_03_Galvanized_Steel_Pipeline_Diameter.pfwd

Calculation Problem:

A galvanized steel pipe carries water over a distance of 180 m at $85 \mathrm{~L} / \mathrm{s}$ with head loss of 9 m .

Determine the size of galvanized steel pipe needed.

Fluid Data: Water at $15^{\circ} \mathrm{C}$, viscosity $=1.14 \mathrm{~mm}^{2} / \mathrm{s}$.

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.
The published problem reports a fanning friction factor which is one quarter of the Darcy friction factor reported by the Pipe Flow Liquid Pipe Diameter software.

(7) Liq⿴iø pipe ¢iənлeヒer		
Results © -		\times
Calc. Method	Darcy-Weisbach	
Material	- Steel (ANSI) Galvanised Sch. 40	
Length	180	m
Elevation Change	0	m
Fluid (15 ${ }^{\circ} \mathrm{C}$)	- Water	
Volume Flow	- 85	$1 / \mathrm{sec}$
Pressure Loss	9	m fluid
Flow Type	Turbulent	
Reynolds Number	506386	
Friction Factor	0.019293	
Fluid Velocity	3.085416	$\mathrm{m} / \mathrm{sec}$
Friction Loss	9.000000	m fluid
Fittings Loss	0.000000	m fluid
Elevation Loss	0.000000	m fluid
Diameter	0.187287	m \sim
\times close results		

Results Comparison:

Data Item	Published Data	App
Inner Diameter	0.1867 m	0.187287 m
Reynolds Number	508000	506386
Friction Factor	0.0048	0.00482325

Case 04: Heavy Fuel Oil - Sizing a Horizontal Pipe

Reference: Fluid Mechanics and Hydraulics - Third Edition, 1994,
Ranald V. Giles, Jack B. Evett, Ph.D., Cheng Liu, Page 149, Example problem 8.11
Liquid Pipe Diameter App: Find_Diameter_Case_04_Horizontal_Oil_Pipe_Size.pfwd

Calculation Problem:

A 300 m length of horizontal pipe carries $0.0222 \mathrm{~m}^{3} / \mathrm{s}$ of heavy fuel oil with an available head loss of 6.7 m .

What size pipe should be installed?

Fluid Data: Heavy Fuel Oil at $16^{\circ} \mathrm{C}$
Viscosity $=0.000205 \mathrm{~m}^{2} / \mathrm{s}$
Specific Gravity $=0.912$.

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.

(>) Liquiஏ pipe ஏiचneヒer		
Results © ©		\times
Calc. Method	Darcy-We	
Material	- Steel (ANS	
Length	300	m
Elevation Change	0	m
Fluid ($16^{\circ} \mathrm{C}$)	- Heary fue	
Volume Flow	- 0.0222	$\mathrm{m}^{3} / \mathrm{sec}$
Pressure Loss	6.7	m fluid
Flow Type	Laminar	
Reynolds Number	808	
Friction Factor	0.079176	
Fluid Velocity	0.971442	sec
Friction Loss	6.700000	mfluid
Fittings Loss	0.000000	m fluid
Elevation Loss	0.000000	m fluid
Diameter	0.170578	
\times close resulis		

Results Comparison:

Data Item	Published Data	App
Inner Diameter	0.170 m	0.171 m
Reynolds Number	812	808

References

1. Piping Calculations Manual, 2005, McGraw-Hill
E. Shashi Menon, P.E
2. 2500 Solved Problems in Fluid Mechanics and Hydraulics, 1989, McGraw-Hill Jack B. Evett Ph. D., Cheng Liu M.S.
3. Basic Principles for the Design of Centrifugal Pump Installations, SIHI Group, 1998, SIHI-HALBERG
4. Flow of Fluids - Technical Paper No 410M, 1999, Crane Co.
5. Flow of Fluids - Technical Paper No 410, 1988, Crane Co.
6. Analysis of Flow in Pipe Networks, 1976, Ann Arbor Science Publishers Inc. Rowland W. Jeppson.
7. Chemical Engineering, Sixth Edition, 1999, Elsevier Butterworth Heinemann J.M. Coulson, J. F. Richardson with J.R. Backhurst, J.H. Harker.
8. Nalluri \& Featherstone's Civil Engineering Hydraulics sixth edition, 2016, Martin Marriott
9. Mechanics of Fluids 9th edition, 2012

Massey, John Ward-Smith
10. Fluid Mechanics and Hydraulics - Third Edition, 1994

Ranald V. Giles, Jack B. Evett, Ph.D., Cheng Liu

