
taking the pressure out of fluid flow calculations

■ワऽ

Verification of Calculation Results
For Compressible Flow

Table of Contents - Results Data: Systems Solved by Gas Pipe Diameter

Introduction 3
Case 01: Minimum Pipe Diameter 5
Case 02: Natural Gas Flow Rate vs Pressure Drop In Steel Pipe 6
Case 03: Diameter of an Air Pipeline 7
Case 04: Designing a Free Air Pipeline 8
References 9

Introduction

pipefレロu

■ワऽ

Pipe Flow Gas Pipe Diameter is a software application that calculates the minimum size of pipe diameter that allows a given gas flow rate within a specified pressure drop．Friction losses are calculated using specialist compressible isothermal flow equations．The pressure loss in the pipe is affected by items such as the internal roughness of the pipe material，internal pipe diameter size，pipe length，gas flow rate，pressure at the start of the pipe，and gas density at the entry condition．

The gas pipe diameter calculations produced by the Pipe Flow Gas Pipe Diameter software can be verified by comparison against published results data for compressible gas systems．The information in this document provides a general description of a published problem，the Reference Source，the Published Results Data，the App Results Data and a commentary on the results obtained for diameter sizes．

For each of the calculation problems detailed in this document，the results data produced by the Pipe Flow Gas Pipe Diameter software compares well with the published results data．

Calculations

Fluid Properties for the pressure condition at the start of each pipe are calculated from the user defined fluid data using the Ideal Gas Law plus any specified Compressibility Factor \mathbf{Z} to establish the density of the gas．

Ideal Gases are considered to be perfectly elastic．Ideal gases follow Boyle＇s Law \＆Charles＇s Law thus the gas density at various points in the system can be calculated using these equations．

Real Gases behave according to a modified version of the ideal gas law．The modifying factor is known as the Gas Compressibility Factor Z．Where natural gas pressures are higher than 115 psi．a（800 kPa．a）the gas compressibility factor may not be close to 1.00 ，so it can be advisable to use a gas compressibility factor based on the pressure in the pipe．

There are different methods that can be used to calculate a gas compressibility factor for a specific pressure condition．The California Natural Gas Association（CNGA）method provides such a calculation for natural gas．The Pipe Flow Gas Pipe Diameter software includes the option to automatically use the CNGA method to determine the natural gas compressibility for the average conditions in each pipe．The CNGA factor is then applied when calculating the gas flow rate using a specific Isothermal Flow Equation that allows for gas compressibility．The CNGA compressibility factor is only applicable to natural gas and is not applicable to other gases such as air etc．

The General Fundamental Isothermal Flow Equation (sometimes known as just the General Flow equation or the Fundamental Flow equation) provides perhaps the most universal method for calculating isothermal flow rates, however it relies on the inclusion of an accurate friction factor. The Pipe Flow Gas Pipe Diameter software calculates an accurate friction factor using the Colebrook-White equation.

In addition to the General Flow Equation, Pipe Flow Gas Pipe Diameter provides the functionality to allow calculations based on alternative equations such as:

The Complete Isothermal Flow Equation (as defined in Crane Technical Paper 410),

The AGA Isothermal Flow Equation,

The Weymouth Isothermal Flow Equation,
The Panhandle A Isothermal Flow Equation,

The Panhandle B Isothermal Flow Equation.

The IGT Isothermal Flow Equation.

Each of these equations can be used to calculate isothermal flow rates in pipes. Most of these equations use a Pipeline Efficiency factor (instead of a friction factor) and a Compressibility Factor. The software allows the user to specify the factors that are used in the calculations.

Software Releases

The Pipe Flow Gas Pipe Diameter App is currently available only on iOS (Apple Mobile Devices).
Pipe Flow Software produces a range of different software applications for calculating flow rates and pressure losses in pipe systems, including our premier Pipe Flow Expert software for Windows, which is used to design energy efficient piping and pumping systems.

Pipe Flow Software programs are used by engineers in over 100 countries worldwide.

We have clients in a variety of industries including aerospace, chemical processing, education, food and beverage, general engineering, mining, petrochemical, pharmaceutical, power generation, water distribution, and wastewater processing.

Case 01: Minimum Pipe Diameter

Reference: Gas Pipeline Hydraulics, 2013
E. Shashi Menon, Ph. D., P.E, Pramila S. Menon, M. B. A., Chapter 3, page 128 Example 3.3

Gas Pipe Diameter App: Find_Diameter_Case_01_Minumum_Pipe_Diameter.pfwd

Calculation Problem:

A pipeline 100 miles long transports natural gas, at a temperature of $60^{\circ} \mathrm{F}$. The inlet pressure is $1400 \mathrm{psi} . \mathrm{g}$ and the delivery pressure required is 800 psi.g. The required flowrate is 100 MMSCFD. Assume a compressibility factor of 0.9 and a 95% pipeline efficiency. The pipe roughness is 700 micro inches.

Find the minimum pipe diameter needed using the AGA, General with Colebrook-white, Panhandle B and Weymouth equations.

Pipe Flow Gas Pipe Diameter Software Calculation Data:
Fluid Ref: \quad Gas Specific Gravity $0.6\left(0.0458 \mathrm{lb} / \mathrm{tt}^{3}\right)$ Viscosity 0.0119 centipoise @ $60^{\circ} \mathrm{F}, 0.00$ psi.g
Fluid Data: Software calculates compressed gas properties.
Pipe Data: Internal roughness 0.000700 inches.
Calculation Method: AGA equation
General Flow equation
Panhandle B equation
Weymouth equation
Standard Atmospheric Conditions: $60^{\circ} \mathrm{F}, 14.696$ psi.a
Gas Model: Real Gas (Ideal Gas Law with compressibility $\mathrm{Z}=0.90$)

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.
Colebrook-white refers to the method used to calculate friction factors in the General Isothermal Flow equation.

>) бこS pipe ¢ianneヒer		
Results ©0		\times
Calc. Method	- General Fundamental	$\$_{9}$
Material	- Steel (ANSI) Sch. 20	
Length	528000	ft
Elevation Change	0	ft
Fluid (60\%)	- Natural Gas (SG = 0.60)	
Compressed@	- 1400	psig
Density	4.898786	$1 \mathrm{~b} / \mathrm{tt}^{3}$
Viscosity	0.0119	Centipoise
Atmosphere	14.695949	psia
Standard Flow	$\checkmark 100$	mmscfo
Mass flow	53.009269	lb/sec
Compressed flow	10.8209	$\mathrm{ft}^{3} / \mathrm{sec}$
Pressure Loss	600	psi
Flow Type	Turbulent	
Reynolds Number	8078414	
Friction Factor	0.011103	
Exit velocity	- 21.916024	$\mathrm{tt} / \mathrm{sec}$
Exit Pressure	-800.000000	psig
${ }_{\text {Exit }}^{\text {Empow }}$	- 18.790180	$\mathrm{tt}^{3} / \mathrm{sec}$
Friction Loss	60.000000	psi
Fittings Loss	0.000000	psi
Elevation Loss	0.000000	psi
Diameter	12.537787	inch
\times close Resulis		

Results Comparison:

Data Item	Published Data	Equation	App
Pipe Diameter	12.47 inches	AGA	12.461 inches
Pipe Diameter	12.55 inches	General	12.538 inches
Pipe Diameter	11.93 inches	Panhandle B	11.930 inches
Pipe Diameter	13.30 inches	Weymouth	13.304 inches

Case 02: Natural Gas Flow Rate vs Pressure Drop In Steel Pipe

Reference: Fluid Flow Handbook, 2002, McGraw-Hill, Jamal M. Saleh, Ph D., PE, Chapter 9, page 9.14 Ex. 9.5.1
Gas Pipe Diameter App: Find_Diameter_Case_02_Diameter_of_Pipeline_78_miles_long.pfwd

Calculation Problem:

Find the inside diameter of a steel pipe used to transport natural gas ($\mathrm{SG}=0.87$) a distance of 78 miles when the following requirements are specified.

The inlet pressure is 600 psi.g and the maximum allowable pressure drop is 145 psi.g.

Assume isothermal flow, a pipeline efficiency of 0.92 , and a compressibility factor $\mathrm{Z}=0.8337$ (calculated from Papay's correlation).

The calculation method used for the published data was the Panhandle B equation.

Pipe Flow Gas Pipe Diameter Software Calculation Data:

Fluid Ref: \quad Natural Gas at $70^{\circ} \mathrm{F}, 0.0$ psi.g Density $0.650 \mathrm{lb} / \mathrm{ft}^{3}$, Viscosity 0.0119 centipoise
Fluid Data: Software calculates compressed gas properties.
Pipe Data: Internal diameter 18.812 inches (nominal 20") Roughness 0.001811 inches (Steel Schedule 40)

Calculation Method: Panhandle B Isothermal equation.
Standard Atmospheric Conditions: $60^{\circ} \mathrm{F}, 14.696$ psi.a
Gas Model: Real Gas (Ideal Gas Law \& compressibility $\mathrm{Z}=0.8337$)

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.

Results Comparison:

Data Item	Published Data	App
Internal Diameter	18.80 inches	18.794 inches

Case 03: Diameter of an Air Pipeline

Reference: Piping Calculations Manual, 2005, McGraw-Hill, E. Shashi Menon, P.E., Page 288, Example 5.17
Gas Pipe Diameter App: Find_Diameter_Case_03_Diameter_of_Air_Pipeline.pfwd

Calculation Problem:

A pipeline 20,000 ft in length allows air at 4000 SCFM.
The initial pressure is 150 psi.a.
If the pressure drop is limited to 50 psi , determine the approximate pipe diameter required.

The calculation method used for the published data was the Weymouth equation.

Pipe Flow Gas Pipe Diameter Software Calculation Data:

Fluid Ref: Air at $60^{\circ} \mathrm{F}, 0.0 \mathrm{psi} . \mathrm{g}$
Fluid Data: Software calculates compressed gas properties. Pipe Data: Roughness 0.001811 inches (Steel Schedule 40)

Calculation Method: Weymouth Isothermal Flow equation.
Standard Atmospheric Conditions: $60^{\circ} \mathrm{F}, 14.696$ psi.a
Gas Model: Ideal Gas Law.

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.

Results Comparison:

Data Item	Published Data	App
Internal Diameter	6.53 inches	6.531 inches

Results	$[7$	x
Calc. Method	- Weymouth Isothermal	缿
Efficiency	1	
Z Model	Ideal Gas Law	
Z =	1	
Material	- Steel (ANSI) Sch. 40	
Length	20000	ft
Elevation Change	0	ft
Fluid ($60^{\circ} \mathrm{F}$)	- Air	
Compressed@	- 135.304051	psi g
Density	0.778898	$\mathrm{lb} / \mathrm{ft}^{3}$
Viscosity	0.017988	Centipoise
Atmosphere	14.695949	psia
Standard Flow	- 4000	SCFM
Mass Flow	5.087401	$\mathrm{lb} / \mathrm{sec}$
Compressed Flow	6.531534	$\mathrm{ft}^{3} / \mathrm{sec}$
Pressure Loss	50	psi
Flow Type	Turbulent	
Reynolds Number	984687	
Friction Factor	0.015459	
Exit Velocity	- 42.117776	$\mathrm{ft} / \mathrm{sec}$
Exit Pressure	- 85.304051	psi g
Exit Flow Compressed	- 9.797301	$\mathrm{ft}^{3} / \mathrm{sec}$
Friction Loss	50.000000	psi
Fittings Loss	0.000000	psi
Elevation Loss	0.000000	psi
Diameter	6.530656	inch \checkmark
\times close results		

Case 04: Designing a Free Air Pipeline

Reference: Piping Calculations Manual, 2005, McGraw-Hill, E. Shashi Menon, P.E., Page 281, Example 5.15
Gas Pipe Diameter App: Find_Diameter_Case_04_Free_Air_Pipeline.pfwd

Calculation Problem:

A pipe is to be designed to carry 150 CFM free air at 100 psi.g and $80^{\circ} \mathrm{F}$.

If the pressure loss must be limited to 5 psi per 100 ft of pipe, what is the minimum pipe diameter required?

Pipe Flow Gas Pipe Diameter Software Calculation Data:
Fluid Ref: Free Air at $80^{\circ} \mathrm{F}, 100 \mathrm{psi} . \mathrm{g}$
Density $0.574 \mathrm{lb} / \mathrm{ft}^{3}$, Viscosity 0.017141 centipoise.
Fluid Data: Software calculates compressed gas properties.
Pipe Data: Roughness 0.0018 inches
Calculation Method: General Isothermal Flow Equation. Standard Atmospheric Conditions: $60^{\circ} \mathrm{F}, 14.696$ psi.a Gas Model: Ideal Gas Law.

Commentary:

See the Results Comparison Table below.
The published data and the calculated results compare well.
The published example guesses an internal diameter and then proceeds to check if this meets the pressure drop restriction, iterating to an approximate solution.

The problem specifies that the pressure loss must be limited to a value of 5 psi per 100 ft and so a pressure drop of 5 psi was used in the Pipe Flow Gas Pipe Diameter software to calculate the exact answer.

Results		\times
Calc. Method	- General Fundamental	¢
Z Model	Ideal Gas Law	
Z =	1	
Material	- Steel (ANSI) Sch. 40	
Length	100	ft
Elevation Change	0	ft
Fluid ($80^{\circ} \mathrm{F}$)	- Air	
Compressed@	- 100	psi g
Density	0.574	$\mathrm{lb} / \mathrm{ft}^{3}$
Viscosity	0.017141	Centipoise
Atmosphere	14.695949	psia
Standard Flow	$\checkmark 150$	SCFM
Mass Flow	0.190942	$\mathrm{lb} / \mathrm{sec}$
Compressed Flow	0.332652	$\mathrm{ft}^{3} / \mathbf{s e c}$
Pressure Loss	5	psi
Flow Type	Turbulent	
Reynolds Number	239744	
Friction Factor	0.023268	
Exit Velocity	- 57.134453	$\mathrm{ft} / \mathrm{sec}$
Exit Pressure	-95.000000	psig
Exit Flow Compressed	> 0.347815	$\mathrm{ft}^{3} / \mathrm{sec}$
Friction Loss	5.000000	psi
Fittings Loss	0.000000	psi
Elevation Loss	0.000000	psi
Diameter	1.056480	inch \checkmark
\times close results		

Results Comparison:

Data Item	Published data	App
Inner Diameter	1.049 inches	1.056 inches
Pressure Drop (per 100ft)	5.05 psi	5.00 psi

References

1. Fluid Mechanics and Hydraulics, 3rd Ed, 1994, McGraw-Hill
R. V. Giles, J. B. Evett PhD, C. Liu
2. Gas Pipeline Hydraulics, 2005 Hardback, CRC Press
E. Shashi Menon
3. Gas Pipeline Hydraulics, 2013, CRC Press
E. Shashi Menon
4. Chemical Engineering Volume 1, $6^{\text {th }}$ Ed, 1999, Elsevier J M Coulson, J F Richardson
5. Flow of Fluids through Valves, Fittings and Pipe Metric Edition - SI Units, Crane Technical Paper 410M, Crane Ltd.
6. Elementary Fluid Mechanics, 1940, John Wiley \& Sons, Inc., John K. Vennard
7. Fluid Flow Handbook, 2002, McGraw-Hill Jamal M. Saleh, Ph D., PE
8. Piping Calculations Manual, 2005, McGraw-Hill E. Shashi Menon
9. 2500 Solved Problems in Fluid Mechanics and Hydraulics, 1989, McGraw-Hill Jack B. Evett Ph. D., Cheng Liu M.S.
